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Abstract Spacecraft and instruments on space missions are built using a wide 
variety of carefully-chosen materials.  It is common for NASA engineers to propose new 
candidate materials which have not been totally characterized at cryogenic temperatures.  
In many cases a material’s cryogenic thermal conductivity must be known before 
selecting it for a specific space-flight application.  We developed a test facility in 2004 at 
NASA’s Goddard Space Flight Center to measure the longitudinal thermal conductivity 
of materials at temperatures between 4 and 300 Kelvin, and we have characterized many 
candidate materials since then.  The measurement technique is not extremely complex, 
but proper care to details of the setup, data acquisition and data reduction is necessary for 
high precision and accuracy.  We describe the thermal conductivity measurement process 
and present results for ten engineered materials, including alloys, polymers, composites, 
and a ceramic. 
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INTRODUCTION 
Many of NASA’s scientific space missions include instruments which operate at 

cryogenic temperatures.  For these missions, both the spacecraft and the instruments are 
built using materials specifically chosen for optimum performance.  They must all 
survive the launch and the space environment, and some have additional requirements on 
their thermal conductivity.  Structural elements must be stiff and strong, but they must 
not conduct excessive heat from the warm to the cold parts of the spacecraft.  Electrical 
cables must provide wires with appropriate electrical resistance, and they must include 
sufficient insulation and shielding.  However, when these cables run from a room-
temperature electronics box to a cryogenic instrument, they must not conduct more heat 
than the cooling system can handle.  Thermal radiator backing plates must be structurally 
sound and have very high thermal conductivity.  In general, all objects on a NASA 
mission must be as light as possible.  Projects often identify engineered materials, such as 
alloys, polymers and composites, as candidates to meet these requirements, based on 
known room temperature properties.  As a result, NASA often finds itself in need of 
thermal conductivity data on materials at cryogenic temperatures.   

In support of the James Webb Space Telescope (JWST), we developed a test 
facility in 2004 at NASA’s Goddard Space Flight Center to measure the thermal 
conductivity of materials between 4 and 300 Kelvin.  These measurements are 
longitudinal, meaning that they determine the conductivity of heat along a significant 
length of material rather than normal to the plane of a thin material sheet.  Nearly all of 
the thermal conductivity measurements that JWST needed were longitudinal. 

The thermal conductivity, κ, is generally a function of temperature, and its MKS 
units are W/m/K.  The general approach to measuring κ is to cause heat to flow through a 
constant-cross-section sample and determine the temperature gradient.  To get high-
precision thermal conductivity data, we chose to perform absolute measurements.  This is 
in contrast to comparative methods, in which calibrated thermal conductance standards 
are installed in the test set-up along with the sample to be characterized.  In one such 
comparative approach, the sample is located between two standards, to which it is 
thermally linked in series[1].  Heat flows through this assembly, and the temperature drop 
across the sample is compared to the drops across the standards.  The ratio of these 
temperature drops is inversely proportional to the ratio of thermal conductances, so the 
sample’s thermal conductivity can be determined.   

For high-precision measurements, this comparative approach poses some 
problems.  The standards must have been characterized to at least as high precision as 
that desired for the sample measurement. In addition, they must have conductances 
reasonably close to that of the sample (which is initially unknown).  A mismatch in these 
conductances increases the uncertainty in backing out the sample conductance, and at 
higher temperatures it stymies efforts to limit the heat loss via thermal radiation.  Nearly 
all candidate materials for use as a standard have batch-to-batch thermal conductivity 
variations of at least a few percent in the cryogenic temperature range.  That suggests that 
in most cases a custom absolute thermal conductance measurement must be done ahead 
of time on each standard, with significant cost and logistical impact.  For high-precision 
data it makes sense to perform an absolute measurement on the sample itself. 

We chose an approach which has been described elsewhere[2].  Our specific 
implementation of this approach has also been described before[3,4], but we have 
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improved details of the setup, data acquisition and data reduction over time.  Since 
developing our test facility, we have characterized many materials for JWST and other 
programs.  Our goal here is to both share the thermal conductivity data and to provide 
guidance to other researchers who may wish to perform similar measurements 
themselves. 

 
MEASUREMENT CHALLENGES 

Most absolute thermal conductivity measurements involve establishing steady 
“thermal balance” states in a sample having uniform cross sectional area along its length.  
In each such balance, heat is generated in a resistive heater mounted on the “floating” end 
of the sample.  The applied power is the product of the electrical current flowing through 
the heater and the voltage drop across it, both of which can be measured to very high 
precision by standard multi-meters.  The sample’s other end is thermally attached to a 
heat sink referred to as the “base,” at a slightly lower temperature.  An idealistic 
assumption is that the sample exchanges no heat with its surroundings, and only conducts 
heat from the heater to the base.  If this were the case, in this steady state, with a small 
temperature drop across the sample, it would be true to a very close approximation that 

 
 𝜅𝜅(𝑇𝑇�) = 𝐿𝐿 𝑄̇𝑄

𝐴𝐴 ∆𝑇𝑇
. (1) 

 
Here 𝑄̇𝑄 is the conducted heat, 𝑇𝑇� is the average of the temperatures at the two sample ends, 
∆𝑇𝑇 is the difference between these temperatures, L is the sample length, and A is the 
sample’s cross-sectional area.  Assuming that a researcher can install and operate 
compact heaters and thermometers, it might seem that an absolute thermal conductivity 
measurement is a straightforward endeavor.  One simply measures the sample’s end 
temperatures and the corresponding heater power, and equation (1) gives the thermal 
conductivity at the average temperature.  Figure 1 is a schematic representation of the 
basic set-up for this approach.  Note that an isothermal can, attached to the base, 
surrounds the sample to eliminate thermal radiation heat exchange with nearby surfaces 
at much higher or lower temperatures.   

Unfortunately, there are a number of complications involved in this approach.  
Some of them will seem obvious and easily-solvable to experienced cryogenic 
researchers.  Others are only important for high-precision measurements.  However, a 
perusal of the literature has shown that some researchers are ignoring each of these issues 
in their attempts to measure thermal conductivity.  We have found that only a modest 
amount of extra effort is needed to address these issues, so we will discuss all of them 
here. 

First, the heat conducted through the sample, 𝑄̇𝑄, is not equal to the measured 
heater power,  𝑄̇𝑄𝐻𝐻.  Some heat is conducted away from the sample’s floating end via the 
thermometer’s electrical leads.  The heater’s leads present a more complicated issue, as 
they carry significantly more current than those of the thermometer.  Ohmic heat is 
generated in these leads, and in some cases a fraction of this heat is conducted into the 
heater itself.  Thus, the net heat conducted away from the heater via its leads may end up 
being either positive or negative.   

At higher temperatures, a significant amount of heat passes directly from the 
heater and sample to the base and its can via thermal radiation.  It may seem that this 
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issue can be mitigated by always using small ∆𝑇𝑇 values across the sample, but this is not 
true.  The radiative heat exchange between two objects at different temperatures, THot and 
TCold, is proportional to THot

4 – TCold
4.  However, for small values of ∆𝑇𝑇 = THot - TCold, it 

is easy to show that 
 
  𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻4 − 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶4  ~ 4𝑇𝑇�3∆𝑇𝑇, (2) 
 

where 𝑇𝑇�  is the average of the two temperatures.  This approximation becomes more 
accurate as ∆𝑇𝑇 decreases relative to 𝑇𝑇�.  Thus, for small ∆𝑇𝑇 values, the heat radiated from 
any location on the sample to its surroundings at the base temperature is proportional to 
∆𝑇𝑇, as is the heat conducted through the sample.  For any given average temperature, this 
radiated heat will give the same relative error in the thermal conductivity measurement, 
independent of ∆𝑇𝑇. 

The most convenient locations for thermometers in such an experiment are 
generally on the base and on the sample’s floating end heater assembly, as shown in 
Figure 1.  However, the indicated total temperature drop is then not equal to the 
temperature drop across the sample.   There are thermal joint resistances associated with 
the heater’s attachment to the floating end and the sample’s attachment to the base.  Since 
heat flows through these joints, there is a localized temperature drop across each of them, 
and the indicated total ∆𝑇𝑇 includes these temperature drops.  In addition, the temperature 
indicated by a thermometer has an error, δT, at any temperature due to scatter in its 
temperature vs. resistance calibration curve. 

The issues listed here result in uncertainties in the power flowing through the 
sample and the temperature drop across it, leading to a significant uncertainty in the 
thermal conductivity.  We describe below a configuration which drastically reduces the 
magnitude of several of these uncertainties and a data acquisition and analysis approach 
which makes the remaining ones nearly irrelevant. 
 
GENERAL SET-UP 

Figure 2 shows our measurement configuration roughly to-scale, with a sample 
length of about 9 cm.  It is installed on the cold plate of a cryostat and surrounded by a 
nearly-isothermal cold plate shield.  The cold plate is cooled to temperatures as low as 3 
K by a standard two-stage cryocooler.  The sample bottom is clamped to a copper base, 
which is located above the cold plate on a stainless-steel support tube.  A heater and 
thermometer on the base allow it to be controlled at any chosen temperature between 
about 4 and 300 K.  An aluminum heater assembly clamps to the floating (top) end of the 
sample.  Installed on this assembly are the sample heater and sample thermometer, 
allowing it to be independently controlled at temperatures above that of the base.   

Two thermometers are bonded to metallic “thermal taps” at intermediate locations 
along the middle region of the sample.  We refer to these as “near” and “far” 
thermometers, indicating their relative distances from the base.  To determine the thermal 
conductivity, we use these tap temperatures and the length between them rather than the 
base and heater temperatures and the total sample length.  This eliminates the effect of 
joint resistances at the sample ends.  

The taps vary in design, depending on characteristics of the sample being tested.  
For low-thermal-conductivity materials, the taps are often pairs of narrow aluminum 
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strips which straddle the sample as indicated in Figure 2.  Tiny screws running through a 
pair of these strips allow them to clamp onto opposite sides of the sample at the same 
vertical location.  Since the aluminum is much more thermally conductive than such a 
sample material, we assume that the taps thermally “short” the sample over the small 
parts of its length which they contact.  Thus, the effective thermal length between the taps 
is taken as the distance between their nearest (facing) horizontal surfaces.  For higher-
thermal-conductivity materials, the taps are either copper wires or pieces of sheet copper 
with holes exactly matching the sample cross section.  In this case, each tap is bonded to 
the sample with a small bead of epoxy, and the thermal length between them is taken as 
the vertical distance between their centers 

A removable cylindrical “guard” surrounds the sample.  This guard consists of a 
stainless-steel tube with copper flanges soldered to its top and bottom ends.  The bottom 
flange, which bolts to the base, is the same height as the clamp holding the sample 
bottom.  Also, the top flange’s bottom is at the same height as the bottom of the sample 
heater assembly.  The top flange extends about a cm above the top of the sample, and a 
copper cover is bolted to its top.  Small, connected horizontal and vertical holes in the 
base allow the guard’s volume to be evacuated, while baffling any thermal radiation. 

A heater wrapped around the top flange and a thermometer on its outside allow it 
to be independently controlled at temperatures above that of the base.  The region inside 
the guard, surrounding the sample, is loosely filled with a fibrous insulation called 
Fiberfrax.  This material has a very low thermal conductivity, proportional to T3, which 
has been independently measured between 80 K and room temperature[2].  A copper can, 
bolted at its bottom to the base, completely surrounds the guard.  A thin multi-layer 
blanket covers this can, and another disk-shaped blanket is installed inside the base’s 
stainless-steel support tube.  These blankets minimize temperature gradients in the base 
and its can caused by thermal radiation to the cold cryostat surroundings. 

During each measurement balance, the guard’s top flange and the sample’s 
floating end are always independently controlled at the same temperature.  For small ∆𝑇𝑇 
values, this results in sample and guard temperature profiles that match nearly identically.  
Thus, there is nearly zero thermal radiation between the sample and guard in the radial 
direction.  Any radiation in the axial direction is reduced to nearly zero by the fibrous 
insulation.  A finite-element thermal model, discussed later, supports the fact that the 
guard and insulation effectively eliminate the loss of heat from the sample by thermal 
radiation.  

 
THERMOMETERS AND THEIR LEADS 

Thermometers used in this apparatus are calibrated SD-package CernoxTM 
sensors[5].  For these resistive devices, the actual sensing chip is inside a 1 x 2 x 3 mm 
hermetic box.  This compact packaging is essential for installation on the very small 
surfaces of our sample thermal taps.  Unfortunately, these tiny sensors come with two 
approximately two-cm-long straight copper “terminals” to which the electrical leads must 
be soldered.  It is possible to shorten these terminals by cutting them, but then 
precautions must be taken not to overheat the sensor during the soldering process.  
Alternatively, the terminals can be folded back on themselves after soldering to reduce 
their profile, but care must be taken not to break them or pull them off the sensor 
package.  We hope that in the future LakeShore Cryotronics will provide a standard SD 
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package configuration in which they directly solder isolating leads onto the sensor 
package, eliminating these copper terminals.   

Cryogenic thermometers are read out via four electrical leads.  Two leads conduct 
the excitation current, and two are used to measure the resulting sensor voltage.  Since 
the current is extremely low, there is essentially no ohmic heating in the leads for any 
practical wire resistance values.  Thus, the leads wires can be selected to have very high 
electrical and thermal resistance.  When purchasing thermometers with leads installed by 
LakeShore Cryotronics, we opt for their smallest-diameter phosphor-bronze leads.  When 
we choose to install our own leads, we use custom-made 0.06 or 0.13 mm diameter 
cupro-nickel-clad stainless-steel wire, which is stronger and less thermally conductive 
than phosphor bronze wire of the same diameter. 

Proper installation of an SD-package thermometer involves thermally attaching its 
electrical leads to the surface on which the thermometer is mounted.  We bond 
thermometers and leads to the taps using varnish, which can later be dissolved with 
alcohol to allow removal of the thermometers without damaging them.  We also varnish 
the far thermometer’s leads to the sample heater assembly, ensuring that all heat flowing 
through the middle part of the sample originates at the sample heater.   

The leads from the near thermometer are thermally attached to the base as they 
exit it through epoxy-filled holes.  All leads from the sample heater assembly similarly 
exit the guard’s top flange.  This detail is particularly important.  Since the tops of the 
sample and guard are kept at the same nominal temperature in each balance, we expect to 
have zero heat conducted through the leads running between them.  Thus, the guard 
serves a second purpose, eliminating heat loss through electrical leads.  

One further step is taken to reduce the heat conducted by the thermometer leads.  
Between any two of their thermal attachment locations within the guard, each 
thermometer’s leads are coiled so that they follow a spiral path.  This is accomplished by 
temporarily tightly-wrapping them around a small-diameter rod before installing the 
thermometer.  This coiling can increase the effective thermal length along the leads by as 
much as an order of magnitude. 
 
HEATERS AND THEIR LEADS 

The sample heater and its current leads are engineered to minimize heat generated 
in these leads inside the guard.  As with the sample thermometer, both ends of these leads 
are held at the same temperature during balance.  However, the heater current is much 
higher than that used in the thermometers.  About half of the ohmic heat generated in 
these leads is conducted into the heater, but it is not part of the heater power measured as 
the product of its current and voltage.  Rather than try to calculate and correct for this 
extra heat, we minimize it by keeping the lead resistance more than 100 times lower than 
the heater resistance.  We don’t use copper leads heater leads here, as we generally prefer 
to keep their thermal conduction from being too high.  Our sample heater is a small 10 
KΩ metal-film resistor epoxied onto the aluminum heater clamp.  Its leads currently 
contain 0.13 mm diameter stainless steel wires, but in the past they have been made from 
excess LakeShore phosphor bronze thermometer leads.  Their round-trip resistance inside 
the guard is less than ten ohms, so the extra heat from the leads is less than 0.1% of the 
measured heater power and can be ignored.  The electronic controller box powers this 
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heater with up to 50 volts, and the resulting 0.25 Watt heater power is sufficient for all of 
our thermal balances. 

The heaters on the base and the guard’s top flange are used for temperature 
control, but their actual power values are not measured.  They are made of 0.13 mm 
diameter stainless steel wire wound around and epoxied to the respective stages, with 
resistances of approximately 50 ohms.  Their current leads are 0.25 mm diameter copper, 
and in our system they can provide up to 50 Watts. 

 
INSTRUMENTATION  

The thermometers are read using three Cryogenic Control Systems, Inc. Model 
32B temperature controllers.  Each of these devices can read two thermometers 
simultaneously and can provide proportional-integral-differential (PID) control of their 
temperatures via two independent heater circuits.  We control the temperatures of the 
base and the sample and guard floating ends, and we monitor the near, far, and cryostat 
cold plate thermometers.  With acceptable time-averaging, these temperatures can be 
resolved and held stable to better then 0.1 mK RMS at our lowest temperatures and about 
1 mK at room temperature.  The sample heater current and voltage are read constantly 
with two Keithley model 2000 6.5-digit multi-meters.   

Each thermometer is read by measuring its resistance, and the temperature is 
determined using a calibration file provided by LakeShore Cryotronics.  This file is 
loaded into the temperature controller box, which uses a cubic spline interpolation 
algorithm to convert measured resistances into temperatures.  The box then reports 
temperature values directly to the data acquisition program.  For our selected 
thermometers, a calibration file contains about 80 discreet temperature/resistance pairs 
between 1.2 and 330 Kelvin.  The temperature difference between consecutive calibration 
points increases with rising temperature.  At 4 Kelvin they are about 0.2 K apart, and 
from 100 to 300 K the spacing is 10 K. 

 
VACUUM ISSUES 

For obvious reasons, our measurement must take place in a vacuum environment.  
Our standard practice, for other types of cryogenic tests, is to pump on our sealed 
cryostats for at least 15 hours with a turbo-mechanical pump before powering on the 
cryocoolers.  A cold cathode gauge, attached directly to a cryostat’s vacuum shell, is used 
to confirm that the pressure reaches the acceptably low range of about 0.1 mTorr during 
this time.  After the cooldown, our experiments are inside a sub-ten-Kelvin shield 
attached to the cold plate, and this is surrounded by another shield at about 50 Kelvin.  
Any small flow of air or water vapor from the outer vacuum shell freezes on these shields 
before reaching the experiment.  Inside the cold plate shield, the partial pressure of all 
gases other than helium or hydrogen is essentially zero.  A charcoal getter installed on the 
cold plate next to our experiment ensures that even these gases will be adsorbed, and their 
pressures are trivially low. 

We learned recently that under certain circumstances a cold cathode gauge can 
split water molecules and create a flow of hydrogen gas[6].  This hydrogen does not 
freeze on the outer shield, and its flow to the getter may eventually result in a non-zero 
pressure inside the inner shield.  To avoid this problem, we only power on the gauge for 
short periods of time to check the vacuum, leaving it off at all other times. 
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However, there is an additional concern during our thermal conductivity 
measurements, for which the critical volume is inside the guard.  At room temperature, 
the FiberFrax insulation is capable of absorbing a significant amount of water from the 
air.  The pump-out path for the guard has a relatively high flow impedance, so it takes a 
long time to dry out the Fiberfrax.  For low cryogenic sample temperatures, this is not a 
problem, as the water remains frozen on the fibers with essentially zero vapor pressure.  
However, when measurements are take closer to room temperature, water resumes 
evaporating from the fibers, and the pressure inside the guard rises.  This produces an 
additional conductive path for the sample heat, and it can lead to a resolvable error in our 
data.  The cold plate shield does not mitigate this problem, aside from very slowly cryo-
pumping the water vapor away.   

Thus, it is essential that we dry out the Fiberfrax before cool-down.  To facilitate 
this process, we use the sample heater as an effective pressure gauge.  During the cryostat 
pump-out period, we control the base temperature at 320 K.  The guard temperature is not 
controlled, but the sample’s floating end is held at 321 K.  After these temperatures have 
stabilized, we monitor the sample heater’s controlling power.  Because of the mismatch 
between sample and guard temperatures, there is a pressure-dependent heat flow from 
sample to guard.  This results in a slow, downward trend in the sample controlling power 
over time, eventually reaching a constant value after about 48 hours.  We interpret this 
steady power as an indication that the water vapor pressure is no longer significant.  
Since we generally don’t take thermal conductivity data above 295 Kelvin, the water 
vapor pressure should always be even lower than it was at the end of our bake-out. 
 
DATA ACQUISITION  

A computer is interfaced to the temperature controllers and multimeters, and we 
have written two different LabView software routines for data acquisition.  One routine 
allows manual control of the measurements.  It displays continuous graphs of 
thermometer and sample heater power readings and allows a user to change each control 
channel’s temperature set-points and PID parameters.  New measurements are taken 5 to 
10 times per second, but each graphed point has been time-averaged over a user-selected 
period to reduce scatter.  This enables an easier determination of when the heater power 
and relevant temperatures have settled to steady values, and the final results read from the 
graphs have high resolution.  A researcher measuring thermal conductivity over a limited 
temperature range could use a routine such as this, but it generally involves a lot of real-
time human interaction. We use this program to set up and monitor the pump-out and 
cool-down, and before the beginning of a data run to determine effective PID parameters 
for a given sample. 

The second routine is a fully-automated data acquisition program for thermal 
conductivity measurements.  It reads pre-determined temperature set-points for the base 
and the sample and guard floating ends from a configuration file.  For each average 
temperature, four different such balances are established with non-zero temperature drops 
between the base and the sample floating end.  Because of small relative offsets in the 
calibration of the sample, guard, and base thermometers, it is not possible to consistently 
control the sample and guard at the same temperature as the base, and including such a 
“zero ∆T” point actually increases the error in the measurement.  While waiting for 
balance to be achieved, the routine plots all temperatures and the sample heater power 
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real-time.  It also repeatedly stores all values averaged over a period of time selected by 
the user, usually ten minutes.  At the end of each such period, it evaluates the latest data 
for temperatures and heater power relative to specific criteria to determine if a steady 
state has been achieved.  For the sample heater power and the two intermediate 
thermometer temperatures, it performs a least-squares fit of each data set to a linear time 
dependence and compares the slope to the uncertainty in that slope.  If a slope is small 
compared to its own uncertainty, with a pre-chosen comparison factor, the routine treats 
that data set as steady.  For the base and the guard and sample floating ends, their average 
temperatures over the time period are compared to their individual control set-points.  
When one of these temperatures matches its set-point to within a pre-selected error, it is 
considered to be steady.  When all five thermometers and the sample heater power are 
simultaneously steady at the end of a time period, the measurement has achieved balance.  
For each parameter, the routine stores the average value and standard deviation for the 
balance time period in a raw data file.  After this, it updates the temperature control set-
points to the next set of values in the configuration file to begin the next balance.  This 
process continues until the end of the configuration file is reached. 

 
TEMPERATURE CONTROL 

Selecting the best parameters for temperature control in our measurements was 
originally a challenge.  This was particularly true for the sample floating end control, as 
each sample’s thermal conductivity and specific heat are unique.  We concluded that the 
differential control parameter was not helpful and added noise, so we have always used 
proportional-integral (PI) control.  The main difficulty was that the best P and I 
parameters for maintaining steady temperature control are not well suited for efficiently 
changing to a new temperature setpoint.  We found that the temperature would either 
“undershoot” or “overshoot” the setpoint, and, for low-conductance samples, the 
resulting long settling time was very inconvenient. 

After years of struggling with this problem, we adopted a simple approach which 
almost completely eliminated it.  Whenever a control channel is moving a temperature to 
a new setpoint, we initially de-activate the integral control parameter and use “P-only” 
control.  A relatively high proportional gain can be used, and the temperature quickly 
reaches a stable value slightly below the setpoint.  Then we activate the integral control 
contribution, which brings the temperature to the setpoint without overshooting.  Once 
stable control is achieved, the proportional gain can be lowered to reduce the noise in 
instantaneous readings.  However, with time averaging over ten minute periods, this is 
generally not necessary.  We use the manual-control software to explore the appropriate P 
and I parameters and the required duration for de-activating the integral.  The automated 
data program is set up to use these values, and we intervene to change them as needed 
while the average sample temperature steps up from about 4 Kelvin to 295 Kelvin. 

 
DATA ANALYSIS  

When the automated program is complete, the raw data file contains four 
temperature and power data sets for each average temperature between the base and the 
sample’s floating end, each with a different overall sample temperature drop. This allows 
us to use a differential version of the thermal conductivity equation, namely 
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 𝜅𝜅(𝑇𝑇�) = 𝐿𝐿
𝐴𝐴
𝑑𝑑𝑄̇𝑄
𝑑𝑑∆𝑇𝑇

 . (3) 
 

As mentioned earlier, ∆T is now the difference between the sample’s intermediate tap 
temperatures, 𝑇𝑇�  is their average value, and L is the distance between the taps.  For a given 
𝑇𝑇�, the derivative is determined from a least-squares linear fit of 𝑄̇𝑄 versus ∆T.  Fitting four 
values allows a reasonable determination of the derivative’s uncertainty due to scatter in 
the data, which would not be possible if only two points were used.  This uncertainty is 
added in root-mean-square fashion to the uncertainties in L and A, resulting in an overall 
uncertainty in the thermal conductivity at that average temperature. 

In general, 𝑇𝑇�  is not exactly constant for these four balances, unless the 
intermediate temperature taps are equidistant from the center of the sample.  However, it 
ends up being very close to the constant average of the base and floating end 
temperatures, so we use this value in equation (3). 

The use of a differential measurement technique is very important, as it 
essentially eliminates the effect of absolute temperature uncertainty due to the calibration 
curves.  For all small values of ∆T about the same average temperature, errors in the 
indicated tap temperatures remain nearly constant.  The result is that there is much less 
relative uncertainty in d𝑄̇𝑄/d∆T than in any single value of 𝑄̇𝑄/∆T.  The same is true of the 
sample floating end and guard temperatures, which are nominally equal.  Any relative 
calibration error in these temperatures is nearly constant for a given 𝑇𝑇�, so there will be a 
resulting constant temperature difference between the guard and sample.  This will result 
in a nearly fixed conducted heat between them, but it will not impact the derivative in 
equation (3).   

 
CALIBRATION CURVE SLOPE UNCERTAINTY  

We have explained how our differential measurement drastically reduces errors 
due to scatter in thermometer calibration curves, but we must discuss how much error 
remains.  First, we consider the impact of the intermediate tap thermometers.  To simplify 
the discussion, we assume that d𝑄̇𝑄/d∆T in equation (3) is calculated based on only two 
different balances.  In this case, we are actually measuring ∆𝑄̇𝑄/∆(∆T).  It is easy to show 
that the denominator of this ratio is ∆TF - ∆TN, the difference in the changes in the “far” 
and “near” tap temperatures between the two balances.  The uncertainty in each of these 
denominator terms contributes equally to the denominator’s overall uncertainty, and our 
setpoints are chosen so that ∆TF = -∆TN.  Assuming that the box performs perfect 
resistance measurements on each thermometer, we can show that 
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Thus, it is important to evaluate the relative errors in the dR/dT slopes of the tap 
thermometer calibration curves, as evaluated by the readout box.   

Due to random errors in the calibration process, it is assumed that the calibration 
points are scattered about a theoretically “true” resistance-versus-temperature curve for 
each thermometer.  LakeShore’s estimate of their calibration point uncertainty ranges 
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from +/- 5 mK at 1 K to +/- 40 mK at 300 K.  They also provide points computed from a 
Chebyshev Polynomial fit along with each calibration file, and their website suggests that 
this “smoothing” fit may be closer to the true curve than are some individual points in the 
file.  For comparison, we also performed a “cubic spline smoothing” fit on the calibration 
file of an intermediate temperature tap thermometer from our apparatus[7].  These fits use 
information from a number of calibration points surrounding a given temperature to 
predict the resistance at that temperature, but neither fit exactly matches any of the 
original calibration points.  The two smoothing fits matched extremely closely, and we 
assume that the slope of either one is a good estimate of the thermometer’s true dR/dT. 

In contrast, a cubic spline interpolation of data is forced to exactly match each of 
the data points.  It “zig-zags” above and below the curve generated by a smoothing fit of 
the same data.  Similarly, its slope curve has many crossings of a smoothing fit’s slope 
curve.  Since our thermometer readout boxes use a cubic spline interpolation, we 
evaluated the resulting dR/dT slope differences for the tap thermometer. 

Figure 3 compares the slopes of different curves associated with the calibration 
file of the thermometer mentioned above.  The blue dashed curve is the percent slope 
difference between the cubic spline interpolation of the calibration points and the cubic 
spline smoothing curve of those points.  This gives a good indication of the local error in 
dR/dT resulting from the controller box’s interpolation.  Between 6 and 300 K the worst-
case error is 0.3%, but over nearly all of this range it is well below 0.2%.  Below 6 K the 
error is higher, but it still less than 1%.  This indicates that the potential systematic error 
due to the interpolation is small compared with the systematic A/L uncertainty for most 
samples.  The red solid curve is the percent slope difference between a cubic spline 
interpolation of the same calibration’s Chebychev fit points and the cubic spline 
smoothing curve of the original data.  Above 5 K this slope difference is well below 
0.1%, so the spline interpolation of the Chebychev points has what we assume to be the 
correct slope.  Thus, it would be possible to essentially eliminate possible dR/dT errors by 
loading the Chebychev calibration points into our controller boxes.  We have not 
historically done this, but we will probably do so for thermal conductivity measurements 
in the future. 

 
SAMPLE/GUARD MIS-MATCH UNCERTAINTY  

We described earlier how the guard and Fiberfrax nearly eliminate radiative heat 
loss from the sample.  For a given average temperature, any thermometer calibration 
offset between our guard and sample thermometers is likely to remain constant for all 
four balances.  To first order, this will result in a constant heat leak between the guard 
and sample, which will not affect our power versus ∆T slope.  However, the Fiberfrax 
thermal conductivity is strongly temperature-dependent, so there will be slightly more 
heat conducted between the sample and guard for larger ∆T values.  This second-order 
effect will be most important at room temperature, the upper end of our test temperature 
range.  Here the Fiberfrax will have its largest conductivity relative to any realistic 
sample, and the possible thermometer offset might be as high as 80 mK.   

To study the impact of this effect, we made a finite-element thermal model of a 
hypothetical cylindrical PVC sample inside our 31.75 mm diameter guard.  We chose 
PVC because it has a very low thermal conductivity of 0.16 W/m/K at 300 K, and thus 
should be susceptible to this error.  We modeled four different balances with average 
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temperature of 300 K, each with an 80 mK offset between the sample and guard 
thermometers.  We performed our usual data analysis using the temperatures and power 
given by the model.  The computed thermal conductivity indeed differed visibly from the 
actual value assumed in modeling the sample.   

We repeated this calculation for several different sample diameters between 3 and 
30.5 mm.  Figure 4 shows a smooth curve fit of these points.  For very small sample 
diameters, the error rises rapidly with decreasing diameter.  This is intuitive, since the 
heat conducted through the sample is proportional to the diameter squared.  As the 
sample diameter approaches that of the guard, heat leaking radially through the Fiberfrax 
becomes important, and the error rises.  Thus, there is an optimum sample diameter, 
which, for the parameters assumed in this case, occurs around 25 mm.  While such a 
large sample with the necessary thermometers would not fit in our guard, in general it is 
best to make all sample diameters as large as possible.  We expect this error to be 
inversely proportional to the sample thermal conductivity, so it will be trivially small for 
nearly all samples we expect to characterize. 

 
TEST RESULTS 

We have tested 27 samples in our facility since it was developed in 2004, of 
which five have been described in previous publications[3,4].  Thirteen samples were 
customized electrical cables used on JWST.  Each cable included numerous metal 
conductors and shields separated by polymer insulation.  While the cross sections of 
metallic components were well known, the polymer area was always approximate.  Thus, 
we performed a thermal conductance measurement on each type of cable to improve the 
accuracy of the JWST thermal model.  Note that data from these tests were thermal 
conductances in units of [W·m/K], rather than thermal conductivity values.  Since the 
cables were custom-made for JWST, the results are not of general interest and are not 
presented here. 

Figure 5 shows data for three high-conductivity materials which were candidates 
for use as a deep-space thermal radiator backing plate.  The first of these was aluminum 
1350, which is a 99.5% pure aluminum alloy.  The second was AlBeMet, a composite 
product from Materion Corporation made from aluminum and beryllium.  The AlBeMet 
was formed into 1.3 mm thick sheet by a process that involved extrusion and rolling, and 
we tested samples in the longitudinal and transverse directions relative to that elongation.  
The longitudinal conduction is measurably higher at low temperatures, but this effect 
disappears near room temperature.  Note that the error bars are smaller than the circle, 
square and diamond symbols used in the graph. 

Figure 6 presents results for two materials of medium thermal conductivity.  The 
Shapal Hi-M Soft, produced by Precision Ceramics, is a machine-able ceramic containing 
aluminum nitride and boron nitride.  The aluminum 6061-T651 was used in a “heat-flow 
meter,” for which the thermal conductance of a rod needed to fall in a narrow range of 
values.  The solid curve in this figure is the fit provided for aluminum 6061-T6 on the 
National Institute of Standards and Technology (NIST) materials properties website[8].  
This fit is about 30% lower than our data at the lowest temperatures, but it is higher than 
our data at room temperature.  We don’t know the cause of this difference, but it might 
result from variations in the sample materials.  The temper designations T651 and T6 
refer to the same heat treatment process, but the former includes a minor plastic stretch of 
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the alloy after the quench[9].  This step is typically included for stress reduction in thick 
pieces of aluminum, in which there is a significant temperature gradient across the 
material during the quench.  Our sample was cut from a heat-treated 10 cm thick plate, 
and its properties could be affected by its original depth within the plate.  The T6 
treatment of the NIST-referenced sample suggests that it was cut from a thinner, more 
homogeneous piece of alloy.  Also, the specification for aluminum 6061 allows for 
significant variation in the contents of alloying elements.  Our sample contained, by 
weight, 0.7% silicon, 0.46% iron, 0.23% copper, 0.12% manganese, 0.9% magnesium, 
0.17% chromium, 0.09% zinc, 0.07% titanium, and 0.04% other elements.  In general, we 
advise anyone needing precise knowledge of an alloy’s thermal conductivity to perform a 
measurement on a sample cut from the same piece of stock. 

Figure 7 shows data for three different polymers.  The Epon 815 epoxy sample 
was cast into a cylindrical shape for our measurement.  The other samples were formed 
by elongation, which tends to align their long molecules and enhance the thermal 
conductivity in the elongation direction.  The Torlon sample was extruded, the Teflon 
sheet was rolled in one direction, and in both cases we measured the thermal conductivity 
in the elongated direction.  For comparison, the solid line in the graph is a fit to data for 
what we assume is cast Teflon, from the NIST website[10].  At room temperature the 
rolled Teflon is nearly three times more conductive than the cast Teflon. 

Figure 8 contains data for two different structural composites which are often 
used in cryogenic space-flight instruments. Both of them provide a good combination of 
strength, stiffness, and low thermal conductivity.  The S2 glass sample had a (45, -45, 
0)4s layup in an EX1522 epoxy matrix.  The other sample was T300 carbon fiber with a 
5HS weave in a (45, 0, -45)2s layup in an RS-3C epoxy matrix.  For thermal isolation, 
T300 is advantageous at lower temperatures, while S-glass is better closer to room 
temperature. 

For the convenience of readers, we performed a curve fit of each data set 
presented here.  The fit form is 

 
 𝜅𝜅(𝑇𝑇) = 𝑒𝑒∑ 𝐴𝐴𝑛𝑛[𝑙𝑙𝑙𝑙(𝑇𝑇)]𝑛𝑛𝑛𝑛 , (5) 
 

and the fit coefficients An for each material are given in Tables 1 and 2.  The number of 
terms in the summation varies among materials, as indicated by the numbers of 
coefficients.  The units of κ are W/m/K.  It should be noted that all of the coefficients’ 
significant digits given in the tables must be used, or the resulting fit will not match our 
data to within the experimental uncertainty. 

 
CONCLUSION 

Thermal conductivity measurements between 4 and 300 K with a precision better 
than 1% are quite feasible, but they require careful attention to detail.  In particular, it is 
important to use a facility and a procedure that are insensitive to first-order errors.  Our 
own facility and staff are generally available to characterize materials over this 
temperature range for any project with NASA funding.   
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Figure 1.  A schematic representation of a basic thermal conductivity measurement 
apparatus.  There are problems with this approach which make it inappropriate for 
high-precision measurements. 
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Figure 2.  A schematic view of our enhanced thermal conductivity apparatus, which is 
appropriate for high-precision measurements between 4 K and room temperature. 
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Figure 3.  The slope difference between a spline-smoothed approximation of a 
thermometer calibration curve, and two different spline interpolations.  The blue dashed 
curve is the difference for an interpolation of raw calibration data.  The red solid curve is 
the difference for an interpolation of points generated using a Chebychev polynomial fit 
of the calibration points. 
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Figure 4.  The percent error expected for a 300 Kelvin thermal conductivity 
measurement of PVC due to a constant 0.08 K mismatch between the sample and 
base thermometer calibrations. 
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Figure 5.  Thermal conductivity of three different candidates for a radiator 
substrate.  The blue circles are aluminum 1350.  The red squares and green 
diamonds are for AlBeMet sheets oriented in the longitudinal and transverse 
directions, respectively, relative to their elongation direction during 
extrusion/rolling.  
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Figure 6.  Data for medium thermal conductivity samples.  The red squares are 
aluminum 6061-T651.  The solid curve is the fit provided for aluminum 6061-T6 on 
the NIST materials properties website.  The blue circles are Shapal Hi-M Soft, a 
machine-able ceramic containing aluminum nitride and boron nitride. 
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Figure 7.  Thermal conductivity of polymers.  The blue circles are Epon 815 epoxy.  
The red squares are extruded Torlon and green diamonds are rolled Teflon sheet, 
both measured in the longitudinal direction relative to their elongation.  The green 
solid line is a curve fit for Teflon as listed on the NIST materials properties website. 
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Figure 8.  Thermal conductivity of composites.  The blue circles are S-glass [(45,-
45,0)4s layup, S2 glass in EX1522 epoxy matrix], and the red squares are T-300 
[(45,0,-45)2s layup, T300 carbon fiber with 5HS weave in RS-3C epoxy matrix].  
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Sample Aluminum 
1350 

AlBeMet 
(Longitudinal) 

AlBeMet 
(Transverse) 

Shapal Hi-M 
Soft 

Aluminum 
6061 

Range 
(K) 5 to 290 4 to 290 4 to 290 5 to 290 5 to 290 

A0 202.18913 -12.1888 -3.97271 -3.6876776 -15.157786 
A1 -538.40358 29.7292 10.3754 -2.4173503 31.586542 
A2 623.78182 -22.7971 -4.18563 4.2808139 -23.605563 
A3 -400.19331 9.55449 -0.0354217 -1.7313843 9.3260575 
A4 155.65451 -2.28909 0.578585 0.37339127 -1.9804477 
A5 -37.557167 0.317686 -0.181403 -0.043721399 0.21385417 
A6 5.4885214 -0.0245221 0.0224265 0.002113506 -0.009223361 
A7 -0.44454547 0.000845345 -0.00100086   
A8 0.015306016     

 
 
Table 1.  Fit coefficients for several high and medium conductivity samples.  The thermal 
conductivity, κ, in W/m/K, is calculated from:  𝜅𝜅(𝑇𝑇) = 𝑒𝑒∑ 𝐴𝐴𝑛𝑛[𝑙𝑙𝑙𝑙(𝑇𝑇)]𝑛𝑛𝑛𝑛 , with the summation 
over the number of coefficients listed for each specific sample.  Note that the coefficients 
must contain all of the significant digits shown in the table, or the resulting fit will not 
match our data to within the experimental uncertainty. 
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Sample Extruded 
Torlon 

Epon 815 
Epoxy Teflon Sheet S-Glass 

Composite 
T-300 

Composite 
Range 

(K) 60 to 150 6 to 290 10 to 299 5 to 295 5 to 290 

A0 -5206.316 0.22522 -107.23044 1.64588 8.3131 
A1 5767.071 -4.8062 170.03226 -14.313 -26.806 
A2 -2554.667 4.1862 -114.46293 15.0661 22.066 
A3 565.4081 -2.0439 40.585704 -7.1898 -9.1176 
A4 -62.51743 0.55823 -7.9233332 1.76388 2.0662 
A5 2.762821 -0.077792 0.80654056 -0.216022 -0.2415 
A6   0.0042945 -0.03348673 0.0105004 0.011366 

 
 
Table 2.  Fit coefficients for thermal conductivity, in W/m/K, of polymer and composite 
samples.  The fit function and the caution regarding significant digits in the coefficients, 
given in the Table 1 caption, apply here as well. 
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HIGHLIGHTS 
 

• We developed an apparatus for high-precision thermal conductivity measurements 
• Our apparatus and technique avoid many common systematic measurement errors 
• We show that the impacts of second-order thermometry effects are insignificant 
• We present data graphs for ten different material samples 
• We provide curve fits to the data for the convenience of readers 


	Abstract Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials.  It is common for NASA engineers to propose new candidate materials which have not been totally characterized at cryogenic temperatures...

